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Abstract

This paper proposes a method to disentangle and quantify in-
teractions among words that are encoded inside a DNN for
natural language processing. We construct a tree to encode
salient interactions extracted by the DNN. Six metrics are
proposed to analyze properties of interactions between con-
stituents in a sentence. The interaction is defined based on
Shapley values of words, which are considered as an unbiased
estimation of word contributions to the network prediction.
Our method is used to quantify word interactions encoded
inside the BERT, ELMo, LSTM, CNN, and Transformer net-
works. Experimental results have provided a new perspective
to understand these DNNs, and have demonstrated the effec-
tiveness of our method. The code will be released when the
paper is accepted.

Introduction
Deep neural networks (DNNs) have shown promise in vari-
ous tasks of natural language processing (NLP), but a DNN
is usually considered as a black-box model. In recent years,
explaining features encoded inside a DNN has become an
emerging direction. Based on the inherent hierarchical struc-
ture of natural language, many methods use latent tree struc-
tures of language to guide the DNN to learn interpretable
feature representations (Choi, Yoo, and Lee 2018; Drozdov
et al. 2019; Shen et al. 2018, 2019; Shi et al. 2018; Tai,
Socher, and Manning 2015; Wang, Lee, and Chen 2019; Yo-
gatama et al. 2016). However, the interpretability usually
conflicts with the discrimination power (Bau et al. 2017).
There is a considerable gap between pursuing the inter-
pretability of features and pursuing superior performance.

Therefore, in this study, we aim to explain a trained black-
box DNN in a post-hoc manner, so that the explanation of
the DNN does not affect its performance. This is essen-
tially different from previous studies of designing new net-
work architectures or losses to learn interpretable features,
e.g. physically embedding tree structures into a DNN.

Given a trained DNN, in this paper, we propose to analyze
interactions among input words, which are used by the DNN
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Figure 1: A tree to represent interactions among words. The
tree is built to explain a trained DNN. Each leaf node (blue)
represents an input word in the sentence. Each non-leaf node
encodes the significance of interactions within a constituent.

to make a prediction. Our method generates a tree struc-
ture to objectively reflect interactions among words. Mathe-
matically, the interaction of several words is quantified as
the difference of the contribution between the case when
these words contribute jointly to the prediction and the case
when each individual word contributes independently to the
prediction. The interaction between words may bring either
positive or negative effects on the prediction. For example,
the word green and the word hand in the sentence he is a
green hand have a strong and positive interaction to the pre-
diction of the person’s identity, because the words green and
hand indicate a “novice” jointly, rather than work individu-
ally to represent a hand with a green color.

The core challenge in this study is to guarantee the ob-
jectiveness of the explanation. I.e. the tree needs to re-
flect true interactions among words without significant bias.
The Shapley value is widely considered as a unique unbi-
ased estimation of the word contribution (Lundberg and Lee
2017), which satisfies four desirable properties, i.e. linear-
ity, dummy, symmetry and efficiency (Grabisch and Roubens
1999). Thus, we define the interaction benefit among words
based on the Shapley value. Let us consider a constituent
with m words. φ1, φ2, . . . , φm denote numerical contribu-
tions of each word to the prediction of a DNN, respectively.
φall represents the numerical contribution of the entire con-
stituent to the prediction. Hence, B = φall −

∑m
i=1 φi

measures the interaction benefit of this constituent. If B >
0, interactions among these m words have positive ef-
fects on the prediction; otherwise, negative effects. Here,
φ1, ..., φm, φall can be computed as Shapley values.
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Given a trained DNN and an input sentence with n words,
Figure 1 shows the tree structure that reflects word inter-
actions encoded inside the DNN. In the tree, n leaf nodes
represent n input words. Each non-leaf node corresponds to
a constituent of the input sentence. A parent node connects
two child nodes with significant interaction benefits. We use
the parent node to encode interactions among its child sub-
constituents. More specifically, there are two types of in-
teractions among words, i.e. (1) interactions within a con-
stituent and (2) interactions between constituents.
• Interactions within a constituent exist among any two

or more words in the constituent. For the sentence “the sun is
shining in the sky,” interactions within the constituent in the
sky consist of interactions among all combinations of words,
including interactions (1) between (in, the), (2) between (the,
sky), (3) between (in, sky) and (4) among (in, the, sky).
• Interactions between constituents. In the aforemen-

tioned sentence, interactions between the constituent the sun
and its adjacent constituent is shining are composed of all
potential interactions among all combinations of words from
the two constituents, including interactions between (1) (the,
is), (2) (the, shining), (3) (sun, is), (4) (sun, shining), (5) (the,
is shining), (6) (sun, is shining), (7) (the sun, is), (8) (the sun,
shining), (9) (the sun, is shining).

The tree selects and encodes the most salient interactions
among words, in order to reveal the signal processing in a
DNN. We further propose additional metrics to diagnose in-
teractions among words, e.g. the quantification of interac-
tions within a constituent, the quantification of interactions
between two adjacent constituents, and ratios of interactions
that are modeled and unmodeled by the tree.

Theoretically, our method can be used as a generic tool
to analyze various DNNs, including the BERT (Devlin
et al. 2018), ELMo (Peters et al. 2018), LSTM (Hochre-
iter and Schmidhuber 1997), CNN (Kim 2014) and Trans-
former (Vaswani et al. 2017). Experimental results have
demonstrated the effectiveness of our method.

Contributions of this paper can be summarized as fol-
lows. (1) We propose a method to extract and quantify in-
teractions among words. (2) A tree structure is automati-
cally generated to represent salient interactions encoded in
a DNN. (3) We further design six metrics to analyze interac-
tions, which provides new perspectives to understand DNNs.

Related Work
Hierarchical representations of natural language.
Many studies integrated hierarchical structures of natural
language into DNNs for better representations (Tai, Socher,
and Manning 2015; Dyer et al. 2016; Wang et al. 2019;
Wang, Lee, and Chen 2019). Chung, Ahn, and Bengio
(2017) revised an RNN to learn the hierarchical structure
of sequential data. Shen et al. (2019) designed a novel
recurrent architecture to automatically capture the latent
tree structure of an input sentence. Other studies learned
syntactic parsers (Drozdov et al. 2019; Htut, Cho, and
Bowman 2019; Kitaev, Cao, and Klein 2019; Li, Mou,
and Keller 2019; Li and Eisner 2019; Mrini et al. 2019),
although these methods pursued a high parsing accuracy,
instead of explaining the DNN. Essentially, the learning of

the syntactic parser aimed to make the parser fit syntactic
structures defined by human experts. In contrast, we intend
to provide a method to analyze DNNs in a post-hoc manner,
without being affected by the subjective bias from humans.

Post-hoc explanations of DNNs: Some studies measured
the representation capacity to understand DNNs (Guan et al.
2019; Cheng et al. 2020; Liang et al. 2020). Voita, Sennrich,
and Titov (2019) studied how token representations changed
from layer to layer. Reif et al. (2019); Raganato and Tiede-
mann (2018) exploited the attention weights of models to an-
alyze syntactic and semantic information encoded in internal
representations. Yogatama et al. (2018) evaluated the abil-
ity of various RNNs to capture syntactic dependencies. An-
other line of research was to estimate word importance to the
prediction based on Shapley values (Shapley 1953), such as
SHAP (Lundberg and Lee 2017), L/C-Shapley (Chen et al.
2019). Murdoch, Liu, and Yu (2018) estimated contributions
of input words to the prediction of an LSTM as well as
inter-word relationships.1 Singh, Murdoch, and Yu (2019)
and Jin et al. (2020) generated hierarchical explanations for
word/phrase importance.

Unlike above studies of estimating attribution/saliency
/contribution/importance of input units, we focus on interac-
tions among words encoded inside DNNs. Janizek, Sturm-
fels, and Lee (2020) explained pairwise feature interactions
by extending the Integrated Gradients explanation method.
Greenside et al. (2018) identified interactions between all
pairs of discrete features in an input DNA sequence. Cui,
Marttinen, and Kaski (2019) estimated global pairwise in-
teractions from a trained Bayesian neural network. Tsang,
Cheng, and Liu (2018) detected statistical interactions from
the weights of feedforward neural networks. Tsang et al.
(2018) proposed to separate feature interactions based on
regularization, and could only be applied to fully connected
multilayer perceptrons. Lundberg, Erion, and Lee (2018) de-
fined SHAP interaction values to quantify interaction effects
between two features. Chen, Zheng, and Ji (2020) gener-
ated hierarchical explanations of DNNs based on the SHAP
interaction value. Chen and Jordan (2019) used a “prede-
fined” syntactic constituency structure to assign an impor-
tance score to each word, and to quantify interactions2 be-
tween sibling nodes on a parse tree. This study had consid-
erable impacts, but it did not learn the linguistic structure.

However, these studies mainly focus on interactions be-
tween two variables (Janizek, Sturmfels, and Lee 2020;
Greenside et al. 2018; Cui, Marttinen, and Kaski 2019;
Lundberg, Erion, and Lee 2018; Chen, Zheng, and Ji 2020)
or are limited to multilayer perceptron architectures (Tsang,
Cheng, and Liu 2018; Tsang et al. 2018). Instead, we
aim to quantify interactions among multiple variables in
DNNs with arbitrary architectures without any prior linguis-
tic structure. More specifically, our method uses a tree to
organize the extracted interactions hierarchically.

Shapley values. The Shapley value (Shapley 1953) was
first introduced in game theory. Given a game with multi-

1Although they called the inter-word relationships interactions,
such interactions had essential difference from our interactions.

2The deviation of composition from linearity.



ple players, each player is supposed to pursue a high award.
Some players may form a coalition to pursue more awards.
The Shapley value is widely considered as a unique unbiased
approach to fairly allocating the total award of a coalition to
each player (here, the award of each player is also termed
the contribution of this player).

Given a game v with n players, N = {1, 2, ..., n}, let
2N = {S|S ⊆ N} denote all the potential subsets of
N . v : 2N 7→ R is a set function mapping from each sub-
set to a real number. For any subset of players S ⊆ N ,
v(S) represents the score obtained by the set of players
S. v(∅) represents the baseline score without any players.
Thus, v(S) − v(∅) corresponds to the award obtained by
players in S. Considering the player a /∈ S, if player a
joins S, v(S ∪ {a}) − v(S) is considered as the marginal
award/contribution of player a. The Shapley value φ(a) is
an unbiased estimation of numerical contribution of player
a in the game as follows.

φ(a) =
∑

S⊆N\{a}

(|N | − |S| − 1)!|S|!
|N |!

(v(S∪{a})−v(S)) (1)

The fairness of Shapley values is ensured by the four fol-
lowing properties (Weber 1988):
• Linearity property: If two games v and w are combined

into a single game v+w, then the Shapley value of each
player a∈N can be added, i.e. φ(a|v+w)=φ(a|v)+φ(a|w).
• Dummy property: A dummy player a∈N satisfies ∀S⊆

N\{a}, v(S∪{a})=v(S)+v({a}). Then, φ(a) = v({a})−
v(∅), i.e. player a has no interaction to any coalition.
• Symmetry property: Given two players a, b ∈ N , if

∀S⊆N \{a, b}, v(S∪{a}) = v(S∪{b}), then φ(a) = φ(b).
• Efficiency property: The overall award can be dis-

tributed to all players, i.e.
∑

a∈N φ(a) = v(N)− v(∅).
Due to the exponential number of sets in N , the com-

putation of Shapley values is NP-hard. A sampling-based
method (Castro, Gómez, and Tejada 2009) can be used to
approximate Shapley values.

Algorithm
Interactions in game theory
Interactions between two players. In game theory, some
players may interact with each other, and form a coalition
to win a higher award. The interaction between two play-
ers is quantified as the additional award when the two play-
ers collaborate w.r.t. when they play individually. Consid-
ering that the Shapley value is an unbiased estimation of
each player’s award/contribution (Lundberg and Lee 2017),
we quantify interactions based on the Shapley value. Sup-
pose that there are n players N = {1, 2, ..., n} in a game
v. Without loss of generality, we randomly select a pair of
players a, b ∈ N . Shapley values of players a and b are
denoted by φ(a) and φ(b), respectively. If players a and b
cooperate to form a coalition Sab = {a, b}, we can con-
sider this coalition as a new singleton player, which is rep-
resented using brackets, [Sab]. In this way, the game can be
considered to have n − 1 players, and one of them is the
singleton player [Sab]. I.e. a and b always appear together

in the game. The interaction benefit between a and b is de-
fined asB([Sab]) = φN\{a,b}∪{[Sab]}([Sab])−(φN\{b}(a)+
φN\{a}(b)). N \ {a, b} ∪ {[Sab]} represents the set of play-
ers in N excluding a, b and being added a new singleton
player [Sab]. The absolute value of the interaction bene-
fit |B([Sab])| represents the significance of the interaction.
B([Sab]) > 0 indicates a cooperative relationship between
players a and b. Whereas, B([Sab]) < 0 indicates an adver-
sarial relationship between players a and b.

Extension to interactions among multiple players. We
extend the two-player interaction to interactions among mul-
tiple players. When the game has n players, let us consider
a subset of players S ( N as a coalition, which is regarded
as a new singleton player [S]. The interaction benefit of the
coalition S is defined as follows.

B([S]) = φ(N\S)∪{[S]}([S])−
∑

a∈S
φ(N\S)∪{a}(a) (2)

In this way, the interaction benefit measures the additional
award/contribution brought by the singleton player [S] w.r.t.
the individual award/contribution of each player computed
in Equation (1) without requiring all players in S to appear
together. The Shapley value φ(N\S)∪{[S]}([S]) is computed
only considering the set of players when we remove all play-
ers in S from N and add a new singleton player [S] in the
game. Similarly, φ(N\S)∪{a}(a) is computed only consider-
ing the set of players when we remove all players in S from
N and add the player a. IfB([S]) is greater/less than 0, inter-
actions of players in S have positive/negative effects, reveal-
ing the cooperative/adversarial relationship among players.

Furthermore, players in S can be divided into two disjoint
subsets S1, S2 (i.e. S1∩S2 = ∅, S1∪S2 = S). Accordingly,
the interaction benefit can be decomposed into three terms:

B([S]) = B([S1]) +B([S2]) +Bbetween(S1, S2) (3)

The first and second terms B([S1]) and B([S2]) indicate
interaction benefits among players within S1 and S2, re-
spectively. The third term Bbetween(S1, S2) indicates inter-
action benefits among players selected from both S1 and S2.
Bbetween(S1, S2) will be introduced in detail later.

Properties of interaction benefits. The overall interac-
tion benefit, B([S]), S ⊆ N , can be decomposed into ele-
mentary interaction components IN (S). The elementary in-
teraction component was originally proposed in (Grabisch
and Roubens 1999). The elementary interaction component
IN (S) measures the marginal benefit received from the
coalition [S], from which benefits of all potential smaller
coalitions S′ ( S are removed. For example, let S =
{a, b, c}. Then, IN (S) measures interactions caused by
[S] = (a, b, c), and ignores all potential interactions caused
by coalitions of (a, b), (a, c), (b, c), (a), (b), (c). Therefore,
the elementary interaction component is formulated as fol-
lows.

IN (S) = I(N\S)∪{[S]}([S])−
∑

S′(S,S′ 6=∅
I(N\S)∪S′

(S′) (4)

In particular, for any singleton player [S], we have
I(N\S)∪{[S]}([S]) = φ(N\S)∪{[S]}([S]). Thus, we can com-
pute IN (S) via dynamic programming. We prove that



B([S]) can be decomposed into elementary interaction com-
ponents (the supplementary material shows the proof).

B([S]) =
∑

S′⊆S,|S′|>1
I(N\S)∪S′

(S′) (5)

Fine-Grained analysis of interactions between two
sets of players
Interactions between two sets of playersBbetween(S1, S2) can
be further decomposed into three parts ψinter, ψintra

1 , ψintra
2 .

Please see the supplementary material for the proof.

Bbetween(S1, S2) = ψinter + ψintra
1 + ψintra

2 (6)

where

ψinter=
∑

L⊆S,L 6⊂S1,L 6⊂S2,|L|>1
I(N\S)∪L(L)

ψintra
1 =

∑
L⊆S1,|L|>1

I(N\S)∪L(L)−
∑

L⊆S1,|L|>1

I(N\S1)∪L(L)

= B([S1])|N ′=(N\S2) −B([S1])

ψintra
2 =

∑
L⊆S2,|L|>1

I(N\S)∪L(L)−
∑

L⊆S2,|L|>1

I(N\S2)∪L(L)

= B([S2])|N ′=(N\S1) −B([S2])

(7)

ψinter represents all potential interaction benefits caused by
sets of players whose elements are selected from both S1

and S2. B([S1])|N ′=(N\S2) denotes interaction benefits of
the singleton player [S1], when the set of players in the game
is N ′ = (N \S2). ψintra

1 indicates the difference of internal
interactions among players in S1 w.r.t. the absence and pres-
ence of players in S2.

Interactions encoded inside a DNN
We aim to analyze interactions among words, which are en-
coded inside a trained DNN. Given an input sentence with
n words, we construct a tree to disentangle and quantify in-
teractions among input words. We first introduce Shapley
values of input words w.r.t. the prediction of the DNN. Here,
we consider each word as a player, and the scalar output
of a DNN as the aforementioned score v in the game. If a
DNN has a scalar output, we can take the scalar output as
the score v. If the DNN outputs a vector for multi-category
classification, we select the score before the softmax layer
corresponding to the predicted class as the score. To com-
pute v(S), we mask words in N \S in the input sentence,
and feed the modified input into the DNN. The embedding
of the masked word is set to a dummy vector, which refers to
a padding of the input to the DNN. Then, the Shapley value
of each word/player a is approximated using a sampling-
based method (Castro, Gómez, and Tejada 2009).

As Figure 1 shows, we construct a binary tree with n leaf
nodes. Each leaf node represents a word, while each non-
leaf node represents a constituent. Two adjacent nodes with
strong interactions will be merged into a node in the next
layer. For each sub-structure of a parent node S with two
child nodes Sl and Sr, according to Equation (3),B([S]) can
be recursively decomposed into the sum of interaction ben-
efits between two child nodes of all non-leaf nodes. Please

a' a b b'

BabBa'a Bbb'

ϕa ϕb

c

Figure 2: Interaction benefits between constituents. The in-
teraction benefit Bab is more significant than Ba′a and Bbb′ ,
so the tree merges a and b to form a coalition c.

see the supplementary material for the proof.

B([S]) = B([Sl]) +B([Sr]) +Bbetween(Sl, Sr)

= B([Sll]) +B([Slr]) +B([Srl]) +B([Srr])

+Bbetween(Sll, Slr) +Bbetween(Srl, Srr)

+Bbetween(Sl, Sr) =
∑

H∈non-leaf nodes

Bbetween(Hl, Hr)

(8)

Metrics for interactions and the construction of a
tree
Metrics for interactions. Besides B([Sl]), B([Sr]) and
Bbetween(Sl, Sr), we define three additional metrics to pro-
vide insightful analysis of interactions among words. Let us
consider a sub-structure of a parent node c (corresponding
to the constituent S) and two child nodes a and b (corre-
sponding to sub-constituents Sl and Sr). As Figure 2 shows,
a′ is the left adjacent node of a, and b′ is the right adjacent
node of b. We propose the metric “density of modeled inter-
actions” for a candidate coalition such as {a, b}, denoted by
r(a, b). This metric measures the ratio of interaction benefits
between two adjacent nodes a and b to the total interaction
benefits related to a and b. The density of the modeled inter-
actions is approximated as follows.

r(a, b) =
interaction benefits between a and b

total interaction benefits related to a and b

≈ |Bab|
|Bab|+ |Ba′a|+ |Bbb′ |+ |φa|+ |φb|

(9)

where Bab = Bbetween(Sa, Sb), φa and φb can be approxi-
mated as φ(N\Sa)∪{[Sa]}([Sa]) and φ(N\Sb)∪{[Sb]}([Sb]), re-
spectively. To measure interaction benefits that are not rep-
resented by the tree, a metric called “density of unmodeled
interactions” denoted by s(a, b) is given.

s(a, b) =
unmodeled interaction benefits

total interaction benefits related to a and b

≈ |Ba′a|+ |Bbb′ |
|Bab|+ |Ba′a|+ |Bbb′ |+ |φa|+ |φb|

(10)

Note that neither r(a, b) nor s(a, b) is an accurate estima-
tion of the ratio of interactions. If two constituents are far
away (e.g. not adjacent), their interaction benefits are usu-
ally small and sometimes can be neglected. Therefore, we
only consider interaction benefits between adjacent nodes
(i.e. Ba′a, Bab, Bbb′ ). We have demonstrated very little ef-
fects of such neglection in Table 1. In addition, according to
Equation (6), we have Bbetween(Sl, Sr) = ψinter + ψintra

l +



(a) The instability of sampling-based Shapley values.

(b) Errors of the estimated interaction benefits.

Figure 3: Evaluation of the reliability of the method.

ψintra
r . Therefore, we define the following metric to measure

the ratio of inter-constituent interactions.

t = |ψinter|/(|ψinter|+ |ψintra
l + ψintra

r |) (11)

Construction of a tree. We use the metric r(a, b) in Equa-
tion (9) to quantify the significance of interactions between
two adjacent constituents, and to guide the construction of
the tree. We are given a trained DNN and an input sentence.
The DNN can be trained for various tasks, such as sentiment
classification, and the estimation of linguistic acceptability.
We construct the tree in a bottom-up manner. Let Ω denote
the set of current candidate nodes to merge. In the beginning,
each word ai of the input sentence is initialized as a leaf
node, Ω = {a1, a2, ..., an}. In each step, we compute the
value of each pair of adjacent nodes r(ai, ai+1). Then, we
select and merge two adjacent nodes with the largest value
of r(ai, ai+1). In this way, we use a greedy strategy to build
up the tree, so that salient interactions among words are rep-
resented.

Experiments
Instability and accuracy of Shapley values. According
to Equation (1), the accurate computation of Shapley values
is NP-hard. Castro, Gómez, and Tejada (2009) proposed a
sampling-based method to approximate Shapley values with
polynomial computational complexity. In order to evaluate
the instability of B([S]), we quantified the change of the
instability of Shapley values along with the increase of the
number of sampling times. Let us compute the Shapley value
φ(a) for each word by sampling T times. We repeated such a
procedure of computing Shapley values two times. Then, the
instability of the computation of Shapley values was mea-
sured as 2||φ−φ

′ ||/(||φ||+ ||φ′ ||) where φ and φ
′

denoted
two vectors of word-wise Shapley values computed in these
two times. The overall instability of Shapley values was re-
ported as the average value of the instability of all sentences.
Figure 3 (a) shows the change of the instability of Shapley
values along with the number of sampling times T . When
T ≥ 1000, we obtained stable Shapley values.

In addition, we also evaluated the accuracy of the estima-
tion of interaction benefitsB([S]). The problem was that the

# of merges BERT ELMo CNN LSTM

1 0.00 0.02 0.01 0.06

2 0.00 0.06 0.02 0.13

3 0.00 0.12 0.02 0.19

4 0.03 0.15 0.07 0.15

5 0.03 0.16 0.07 0.14

Table 1: The rate of incorrect extractions of word inter-
actions, which verifies the assumption that effects of non-
adjacent nodes can be neglected on the SST-2 dataset.

ground truth value of B([S]) was computed using the NP-
hard brute-force manner, according to Equation (1). Consid-
ering the NP-hard computational cost, we only conducted
such evaluations on sentences with no more than 10 words.
The average absolute difference (i.e. the error) between the
estimated B([S]) and its ground truth value over all sen-
tences is reported in Figure 3 (b). We found that the esti-
mated interaction benefits were accurate enough when the
number of sampling times was greater than 1000.

We found that the BERT model exhibited much higher
instability and errors than other models in Figure 3. It was
because the BERT model had much stronger representation
power than other models, and thus encoded more complex
interactions, which was also verified in (Guan et al. 2019).
Thus, the BERT model required more sampling times.

Effects of non-adjacent nodes. To compute the density of
modeled interactions r(a, b), we only considered interaction
benefits between two adjacent nodes, and assumed that in-
teractions of non-adjacent nodes were much less significant
than those of adjacent nodes. To verify this assumption, we
defined the following metric to quantify the interaction ben-
efit r′(a, c) between two non-adjacent nodes a and c, and
evaluated whether the most salient interaction between adja-
cent nodes a, b detected by our method was more significant
than interactions between all potential non-adjacent nodes.
We use r′(a, c) = |Bac|/(|Bac|+ |Ba′a|+ |Baa′′ |+ |Bc′c|+
|Bcc′′ |+ |φa|+ |φc|) to quantify the interaction density be-
tween non-adjacent nodes a and c, where a′ and a′′ were the
left and right adjacent nodes of a, c′ and c′′ were the left and
right adjacent nodes of c. If the interaction density r(a, b)
estimated by our method was higher than that between po-
tential non-adjacent nodes, we considered this as a correct
extraction of word interactions. Table 1 reports the rate of
incorrect extractions of word interactions over all sentences
during the construction of the tree. Based on this assump-
tion, our method performed correctly in most cases.

Correctness of the extracted interaction. We aimed to
evaluate whether the extracted interaction objectively re-
flected the true interaction in the model, but the core chal-
lenge was that it was impossible to annotate ground-truth
interactions between words. It was because the human’s un-
derstanding of word interactions was not necessarily equiva-
lent to objective interactions encoded in a DNN. In this way,
we conducted the following two experiments to evaluate the
correctness of the extracted interactions.



BERT ELMo CNN LSTM Transformer

Ours 0.037 0.133 0.063 0.036 0.012
HEDGE 0.033 0.131 0.023 0.004 0.008

Table 2: Comparisons of cohesion-scores for explanations
of NLP models trained on the SST-2 dataset (Socher et al.
2013).

a1 a2 a3 a4 a5 a6 a7

AND AND

OR

a8 a9 a10 a11

AND

Figure 4: An example of AND-OR models. Each leaf node
is a binary variable.

Experiment 1: In order to quantitatively evaluate the va-
lidity of the extracted interactions among words, we adopted
the metric cohesion-score proposed by Chen, Zheng, and Ji
(2020) to justify a constituent containing significant inter-
actions identified by our method. Given a constituent corre-
sponding to a tree node [p, q] = (ap, ..., aq) in a sentence
x = (a1, ..., ap, ..., aq, ..., an), we picked a word in [p, q]
at a time, and inserted it into a random position in the se-
quence (a1, ..., ap−1, aq+1, ..., an). We repeated this process
until there were no words left in [p, q]. Thus, we obtained a
shuffled sentence x̃ from x. The cohesion-score measured
the change of probability on the predicted class between x̃
and x as follows:

cohesion-score =
1

N

N∑
i=1

1

Q

Q∑
j=1

(p(ŷi|xi)−p(ŷi|x̃(j)
i )) (12)

where xi is the i-th sentence and ŷi is the predicted class.
x̃
(j)
i is the j-th shuffled sentence from xi, and Q was set to

100. For each sentence, we only considered the most sig-
nificant constituent (i.e. the tree node with the maximum
φN\S∪{[S]}([S])) during the construction of the tree. We
used HEDGE (Chen, Zheng, and Ji 2020), which was a top-
down method to recursively split a long sentence into shorter
constituents, as the baseline. Besides, for a fair comparison,
we reimplemented the HEDGE method to explain different
NLP models trained on the SST-2 dataset. As Table 2 shows,
our method outperformed HEDGE, which suggested that
our method extracted more significant interactions within
constituents than HEDGE.

Experiment 2: We constructed a dataset with ground-truth
interactions between the inputs, as follows. The dataset was
comprised of 2048 models. Each model was implemented
as a boolean function, whose input was 11 binary variables
a1, a2, · · · , a11 ∈ {0, 1}. The output of the model was a
binary variable which consisted of AND, OR operations in
a two-level tree structure (e.g. the tree in Figure 4). More
specifically, we designed 1024 models where AND opera-
tions were in the first level, and OR operations were in the
second level. The other 1024 models had OR operations in

F1 score Recall
AND-OR OR-AND Avg. AND-OR OR-AND Avg.

Ours 45.02 45.62 45.32 96.60 98.94 97.77
SI 46.02 0.00 23.01 99.80 0.00 49.90
SI-abs 29.77 29.74 29.76 61.27 61.22 61.25
HEDGE 46.02 0.00 23.01 99.80 0.00 49.90
Random - - 13.18 - - 27.78
LB - - 8.35 - - 18.07
RB - - 8.35 - - 18.07

Table 3: Comparisons of the correctness of the extracted in-
teractions on AND-OR models and OR-AND models.

it        all        adds        up        to        good        fun        .

there   is   no   pleasure   in   watching   a   child   suffer   .

I     just    loved     every     minute     of     this     film      .

too       much       of       the       humor       falls     flat     .

up        to good        fun

no   pleasure watching   a   childwatching   a

just    loved

all        adds

this     film

too       much falls flat

1st merge 2nd merge 3rd merge

every     minute

the      humor     

Figure 5: Examples of the phenomenon that constituents
with distinct emotional attitudes have strong interactions and
are extracted in the first three steps for BERT learned on the
SST-2 dataset.

the first level, and AND operations in the second level. We
evaluated whether the extracted interaction could reflect the
true AND, OR constituents in the input.

The unlabeled F1 score and unlabeled recall were used
to evaluate the correctness of the extracted interaction. We
compared our method with six baselines. The first base-
line was (Lundberg, Erion, and Lee 2018), which defined
a type of two-player interaction (i.e. SHAP interaction),
namely SI for short. We extended this technique to con-
struct a tree. I.e. we recursively merged the two adjacent
nodes with the largest SHAP interaction value. The sec-
ond baseline was similar to the first one. This baseline used
the largest absolute SHAP interaction value (i.e. the signifi-
cance) to construct the tree, namely SI-abs. The third base-
line was HEDGE (Chen, Zheng, and Ji 2020), as mentioned
above. Since there was no other method to construct a tree
for interactons to the best of our knowledge, the other three
baselines Random, left-branching (LB) and right-branching
(RB) trees (used by Shen et al. (2018) as baselines) were
selected as trivial solutions. As Table 3 shows, our method
outperformed all baselines. Note that theoretically, there did
not exist a 100% F1 score, because the extracted binary tree
was naturally different from the ground-truth n-ary tree.

Comparisons of trees generated by different DNNs. We
learned DNNs for binary sentiment classification based on
the SST-2 dataset (Socher et al. 2013), and learned DNNs
to predict whether a sentence was linguistically acceptable
based on the CoLA dataset (Warstadt, Singh, and Bowman
2018). For each task, we learned five DNNs, including the
BERT (Devlin et al. 2018), the ELMo (Peters et al. 2018),
the CNN proposed in (Kim 2014), the two-layer unidirec-
tional LSTM (Hochreiter and Schmidhuber 1997), and the
Transformer (Vaswani et al. 2017).



a

deep and

meaningful

film .

a               deep             and               meaningful               film               .

(a)

been

not

can

he

.

he            can            not            have             been          working             .

have

working

(b)

Figure 6: Examples of trees extracted from BERT trained on
the SST-2 dataset (a) and the CoLA dataset (b), respectively.
Metrics are shown in each non-leaf node.

We used our method to extract tree structures that encoded
interactions among words inside various trained DNNs. Fig-
ure 6 illustrates trees extracted from BERT on different
tasks. (1) For the sentiment analysis task, as Figure 5 shows,
most trees of these DNNs usually extracted constituents
with distinct positive/negative emotional attitudes in early
stages. (2) For the linguistic acceptability task, BERT usu-
ally combined noun phrases firstly, while the subject was
combined almost at last. CNN was prone to construct a tree
with a “subject+verb-phrase+noun/adjective-phrase” struc-
ture. ELMo and LSTM usually extracted small constituents
including a preposition or an article, e.g. “vacation in,” “the
earth.” Transformer tended to encode interactions among ad-
jacent constituents sequentially.

Analysis of significant interactions reflected by the tree:
To understand how interactions among words affected the
DNN to make a decision, we quantified the contribution
of each word/constituent φN\S∪{[S]}([S]) (i.e. φa in Equa-
tion (9)) to the model prediction with sampling times
T = 2000 during the construction of the tree. As Fig-
ure 7 shows, the DNN encoded significant interactions (in-
consistent, emotional), (a wildly, inconsistent emotional),
etc. to correctly predict the whole sentence as negative.
During the construction of the tree, we discovered how
words/constituents interacted to affect the model prediction.
This provided a better understanding of the logic encoded in
the DNN.

Comparisons of the fitness between the extracted trees
and syntactic trees: Furthermore, we compared the fitness
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Figure 7: Effects of the extracted interactions. The extracted
interactions significantly affected the contributions of con-
stituents. For example, significant interactions between “in-
consistent” and “emotional” made the positive word “emo-
tional” negative, which eventually guided the DNN to make
the correct prediction.

Dataset BERT ELMo CNN LSTM

CoLA 36.06 15.38 15.19 12.65

SST-2 17.67 16.72 11.69 29.06

Transformer Random LB RB

CoLA 3.45 15.12 2.68 60.46

SST-2 23.49 16.32 12.27 47.35

Table 4: Fitness (the unlabeled F1 score) between the ex-
tracted trees from NLP models and syntactic trees, which
demonstrates that interactions encoded in a DNN are not
quite related to the syntactic structure.

between the automatically extracted tree and the syntactic
tree of the sentence. To this end, given an input sentence, we
used the Berkeley Neural Parser (Kitaev and Klein 2018) to
generate the syntactic tree as the ground-truth.3 We used the
unlabeled F1 score to evaluate the fitness. Experimental re-
sults are reported in Table 4, which demonstrates the logic of
interactions modeled by the DNN was significantly different
from human knowledge.

In addition, our method can also be applied to build a
tree for interactions w.r.t. the computation of features in
an intermediate layer.

Conclusion

In this paper, we have defined and extracted interaction ben-
efits among words encoded in a DNN, and have used a tree
structure to organize word interactions hierarchically. Be-
sides, six metrics are defined to disentangle and quantify in-
teractions among words. Our method can be regarded as a
generic tool to objectively diagnose various DNNs for NLP
tasks, which provides new insights of these DNNs.

3The parser’s performance was good enough to take its parsing
results as ground-truth.
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